Chevron Left
Back to Emergent Phenomena in Science and Everyday Life

Learner Reviews & Feedback for Emergent Phenomena in Science and Everyday Life by University of California, Irvine

4.3
stars
139 ratings

About the Course

Before the advent of quantum mechanics in the early 20th century, most scientists believed that it should be possible to predict the behavior of any object in the universe simply by understanding the behavior of its constituent parts. For instance, if one could write down the equations of motion for every atom in a system, it should be possible to solve those equations (with the aid of a sufficiently large computing device) and make accurate predictions about that system’s future. However, there are some systems that defy this notion. Consider a living cell, which consists mostly of carbon, hydrogen, and oxygen along with other trace elements. We can study these components individually without ever imagining how combining them in just the right way can lead to something as complex and wonderful as a living organism! Thus, we can consider life to be an emergent property of what is essentially an accumulation of constituent parts that are somehow organized in a very precise way. This course lets you explore the concept of emergence using examples from materials science, mathematics, biology, physics, and neuroscience to illustrate how ordinary components when brought together can collectively yield unexpected, surprising behaviors. Note: The fractal image (Sierpinkski Triangle) depicted on the course home page was generated by a software application called XaoS 3.4, which is distributed by the Free Software Foundation under a GNU General Public License. Upon completing this course, you will be able to: 1. Explain the difference in assumptions between an emergent versus reductive approach to science. 2. Explain why the reductivist approach is understood by many to be inadequate as a means of describing and predicting complex systems. 3. Describe how the length scale used to examine a phenomenon can contribute to how you analyze and understand it. 4. Explain why the search for general principles that explain emergent phenomena make them an active locus of scientific investigation. 5. Discuss examples of emergent phenomena and explain why they are classified as emergent....

Top reviews

MS

Dec 16, 2020

This course has enriched my understanding in science. It has also encouraged me to do research in the field of Emergent Phenomena in future. Thanks to respected professors who made this possible.

RV

May 7, 2017

i enjoyed all the different modules. I recommend they add more explanation to the chaos game assignment.

Filter by:

1 - 25 of 45 Reviews for Emergent Phenomena in Science and Everyday Life

By Pasquale D S

Jun 9, 2020

By Roger P

Feb 12, 2019

By Abraham N

Jul 12, 2020

By sandipan t

Jul 2, 2017

By Rachel J

Apr 20, 2021

By Bernd S

May 12, 2017

By EVANGELIO , M K (

Nov 6, 2020

By Patrick C

Jun 18, 2016

By Mausam S

Dec 17, 2020

By Laura C

Sep 16, 2019

By José C E

Jan 8, 2018

By Ramprashanth V

May 8, 2017

By SvenYeh

Oct 11, 2019

By Denis P

Dec 27, 2020

By Giulia F M

May 18, 2020

By Adnan M

Oct 9, 2017

By John H

Jan 5, 2019

By Deleted A

Jun 7, 2018

By Philip H

Nov 13, 2017

By Niraj K N

Apr 30, 2016

By Geo L

Jul 19, 2016

By Bart S

Jun 21, 2016

By JOHN Q

Feb 21, 2016

By Suman J

Jun 30, 2019

By Nick

Nov 12, 2021