まず、データ品質を向上させる方法や探索的データ分析を実行する方法など、データについての議論から始めます。Vertex AI AutoML についてと、コードを 1 行も記述せずに ML モデルを構築、トレーニング、デプロイする方法を説明します。BigQuery ML のメリットを理解していただけます。その後、機械学習(ML)モデルを最適化する方法、一般化とサンプリングを活用してカスタム トレーニング向けの ML モデルの品質を評価する方法を説明します。
まず、データ品質を向上させる方法や探索的データ分析を実行する方法など、データについての議論から始めます。Vertex AI AutoML についてと、コードを 1 行も記述せずに ML モデルを構築、トレーニング、デプロイする方法を説明します。BigQuery ML のメリットを理解していただけます。その後、機械学習(ML)モデルを最適化する方法、一般化とサンプリングを活用してカスタム トレーニング向けの ML モデルの品質を評価する方法を説明します。
4.4 (50 ratings)
From the lesson
データについて知る: 探索的データ分析によるデータ品質の改善
このモジュールでは、探索的データ分析を実行することで、データの品質を向上させる方法と、データを探索する方法について紹介します。機械学習におけるデータ整理の重要性について説明し、データ品質にどのように影響するかを説明します。たとえば、欠損値があると結果に歪みが生じる可能性があります。また、データ探索の重要性についても学びます。データを整理したら、データセットに対して探索的データ分析を実行しましょう。