ML Parameters Optimization: GridSearch, Bayesian, Random

Offered By
In this Guided Project, you will:
2 hours
No download needed
Split-screen video
Desktop only

Hello everyone and welcome to this new hands-on project on Machine Learning hyperparameters optimization. In this project, we will optimize machine learning regression models parameters using several techniques such as grid search, random search and Bayesian optimization. Hyperparameter optimization is a key step in developing machine learning models and it works by fine tuning ML models so they can optimally perform on a given dataset.

Skills you will develop

  • Data Analysis

  • Machine Learning

  • Mathematical Optimization

Learn step-by-step

In a video that plays in a split-screen with your work area, your instructor will walk you through these steps:

How Guided Projects work

Your workspace is a cloud desktop right in your browser, no download required

In a split-screen video, your instructor guides you step-by-step

Frequently Asked Questions