Principal Component Analysis with NumPy

4.6
stars

287 ratings

Offered By

9,047 already enrolled

In this Guided Project, you will:

Implement Principal Component Analysis (PCA) from scratch with NumPy and Python

Conduct basic exploratory data analysis (EDA)

Create simple data visualizations with Seaborn and Matplotlib

1.5 hours
Intermediate
No download needed
Split-screen video
English
Desktop only

Welcome to this 2 hour long project-based course on Principal Component Analysis with NumPy and Python. In this project, you will do all the machine learning without using any of the popular machine learning libraries such as scikit-learn and statsmodels. The aim of this project and is to implement all the machinery of the various learning algorithms yourself, so you have a deeper understanding of the fundamentals. By the time you complete this project, you will be able to implement and apply PCA from scratch using NumPy in Python, conduct basic exploratory data analysis, and create simple data visualizations with Seaborn and Matplotlib. The prerequisites for this project are prior programming experience in Python and a basic understanding of machine learning theory. This course runs on Coursera's hands-on project platform called Rhyme. On Rhyme, you do projects in a hands-on manner in your browser. You will get instant access to pre-configured cloud desktops containing all of the software and data you need for the project. Everything is already set up directly in your internet browser so you can just focus on learning. For this project, you’ll get instant access to a cloud desktop with Python, Jupyter, NumPy, and Seaborn pre-installed.

Skills you will develop

  • Data Science

  • Python Programming

  • Seaborn

  • Numpy

  • PCA

Learn step-by-step

In a video that plays in a split-screen with your work area, your instructor will walk you through these steps:

  1. Introduction and Overview

  2. Load the Data and Libraries

  3. Visualize the Data

  4. Data Standardization

  5. Compute the Eigenvectors and Eigenvalues

  6. Singular Value Decomposition (SVD)

  7. Selecting Principal Components Using the Explained Variance

  8. Project Data Onto a Lower-Dimensional Linear Subspace

How Guided Projects work

Your workspace is a cloud desktop right in your browser, no download required

In a split-screen video, your instructor guides you step-by-step

Reviews

TOP REVIEWS FROM PRINCIPAL COMPONENT ANALYSIS WITH NUMPY

View all reviews

Frequently Asked Questions

By purchasing a Guided Project, you'll get everything you need to complete the Guided Project including access to a cloud desktop workspace through your web browser that contains the files and software you need to get started, plus step-by-step video instruction from a subject matter expert.

Because your workspace contains a cloud desktop that is sized for a laptop or desktop computer, Guided Projects are not available on your mobile device.

Guided Project instructors are subject matter experts who have experience in the skill, tool or domain of their project and are passionate about sharing their knowledge to impact millions of learners around the world.

You can download and keep any of your created files from the Guided Project. To do so, you can use the “File Browser” feature while you are accessing your cloud desktop.

Guided Projects are not eligible for refunds. See our full refund policy.

Financial aid is not available for Guided Projects.

Auditing is not available for Guided Projects.

At the top of the page, you can press on the experience level for this Guided Project to view any knowledge prerequisites. For every level of Guided Project, your instructor will walk you through step-by-step.

Yes, everything you need to complete your Guided Project will be available in a cloud desktop that is available in your browser.

You'll learn by doing through completing tasks in a split-screen environment directly in your browser. On the left side of the screen, you'll complete the task in your workspace. On the right side of the screen, you'll watch an instructor walk you through the project, step-by-step.