Using TensorFlow with Amazon Sagemaker

4.6
stars

94 ratings

Offered By

6,429 already enrolled

In this Guided Project, you will:

Prepare custom script for Sagemaker.

Train a TensorFlow model using Sagemaker.

Deploy a TensorFlow trained model using Sagemaker.

2 hours
Advanced
No download needed
Split-screen video
English
Desktop only

Please note: You will need an AWS account to complete this course. Your AWS account will be charged as per your usage. Please make sure that you are able to access Sagemaker within your AWS account. If your AWS account is new, you may need to ask AWS support for access to certain resources. You should be familiar with python programming, and AWS before starting this hands on project. We use a Sagemaker P type instance in this project, and if you don't have access to this instance type, please contact AWS support and request access. In this 2-hour long project-based course, you will learn how to train and deploy an image classifier created and trained with the TensorFlow framework within the Amazon Sagemaker ecosystem. Sagemaker provides a number of machine learning algorithms ready to be used for solving a number of tasks. However, it is possible to use Sagemaker for custom training scripts as well. We will use TensorFlow and Sagemaker's TensorFlow Estimator to create, train and deploy a model that will be able to classify images of dogs and cats from the popular Oxford IIIT Pet Dataset. Since this is a practical, project-based course, we will not dive in the theory behind deep learning based image classification, but will focus purely on training and deploying a model with Sagemaker and TensorFlow. You will also need to have some experience with Amazon Web Services (AWS). Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Skills you will develop

  • Deep Learning

  • image classification

  • Machine Learning

  • sagemaker

  • Tensorflow

Learn step-by-step

In a video that plays in a split-screen with your work area, your instructor will walk you through these steps:

  1. Download the data

  2. Prepare the dataset

  3. Create the model

  4. Data generators

  5. Arguments

  6. Finalizing the training script

  7. Upload Dataset to S3

  8. TensorFlow Estimator

  9. Deploy the model

  10. Inference and Deleting Endpoint 

How Guided Projects work

Your workspace is a cloud desktop right in your browser, no download required

In a split-screen video, your instructor guides you step-by-step

Reviews

TOP REVIEWS FROM USING TENSORFLOW WITH AMAZON SAGEMAKER

View all reviews

Frequently Asked Questions

By purchasing a Guided Project, you'll get everything you need to complete the Guided Project including access to a cloud desktop workspace through your web browser that contains the files and software you need to get started, plus step-by-step video instruction from a subject matter expert.

Because your workspace contains a cloud desktop that is sized for a laptop or desktop computer, Guided Projects are not available on your mobile device.

Guided Project instructors are subject matter experts who have experience in the skill, tool or domain of their project and are passionate about sharing their knowledge to impact millions of learners around the world.

You can download and keep any of your created files from the Guided Project. To do so, you can use the “File Browser” feature while you are accessing your cloud desktop.

Guided Projects are not eligible for refunds. See our full refund policy.

Financial aid is not available for Guided Projects.

Auditing is not available for Guided Projects.

At the top of the page, you can press on the experience level for this Guided Project to view any knowledge prerequisites. For every level of Guided Project, your instructor will walk you through step-by-step.

Yes, everything you need to complete your Guided Project will be available in a cloud desktop that is available in your browser.

You'll learn by doing through completing tasks in a split-screen environment directly in your browser. On the left side of the screen, you'll complete the task in your workspace. On the right side of the screen, you'll watch an instructor walk you through the project, step-by-step.