Visualizing Filters of a CNN using TensorFlow

4.5
stars

55 ratings

Offered By

3,035 already enrolled

In this Free Guided Project, you will:
1 hour
Intermediate
No download needed
Split-screen video
English
Desktop only

In this short, 1 hour long guided project, we will use a Convolutional Neural Network - the popular VGG16 model, and we will visualize various filters from different layers of the CNN. We will do this by using gradient ascent to visualize images that maximally activate specific filters from different layers of the model. We will be using TensorFlow as our machine learning framework. The project uses the Google Colab environment which is a fantastic tool for creating and running Jupyter Notebooks in the cloud, and Colab even provides free GPUs for your notebooks. You will need prior programming experience in Python. This is a practical, hands on guided project for learners who already have theoretical understanding of Neural Networks, Convolutional Neural Networks, and optimization algorithms like gradient descent but want to understand how to use the TensorFlow to visualize various filters of a CNN. Note: This course works best for learners who are based in the North America region. We’re currently working on providing the same experience in other regions.

Requirements

Skills you will develop

  • Deep Learning

  • Artificial Neural Network

  • Convolutional Neural Network

  • Machine Learning

  • Tensorflow

Learn step-by-step

In a video that plays in a split-screen with your work area, your instructor will walk you through these steps:

How Guided Projects work

Your workspace is a cloud desktop right in your browser, no download required

In a split-screen video, your instructor guides you step-by-step

Reviews

TOP REVIEWS FROM VISUALIZING FILTERS OF A CNN USING TENSORFLOW

View all reviews

Frequently Asked Questions